Feature extractor selection for face-iris multimodal recognition

dc.contributor.authorEskandari, Maryam
dc.contributor.authorToygar, Onsen
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:35:40Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractMultimodal biometrics-based systems aim to improve the recognition accuracy of human beings using more than one physical and/or behavioral characteristics of a person. In this paper, different fusion schemes at matching score level and feature level are employed to obtain a robust recognition system using several standard feature extractors. The proposed method involves the consideration of a face-iris multimodal biometric system using score level and feature level fusion. Principal Component Analysis (PCA), subspace Linear Discriminant Analysis (LDA), subpattern-based PCA, modular PCA and Local Binary Patterns (LBP) are global and local feature extraction methods applied on face and iris images. In fact, different feature sets obtained from five local and global feature extraction methods for unimodal iris biometric system are concatenated at feature level fusion called iris feature vector fusion (iris-FVF), while for unimodal face biometric system, LBP is used to achieve efficient texture descriptors. Feature selection is performed using Particle Swarm Optimization (PSO) at feature level fusion step to reduce the dimension of feature vectors for improving the recognition performance. Our proposed method is validated by forming three datasets using ORL, BANCA, FERET face databases and CASIA, UBIRIS iris databases. The results based on recognition performance and ROC analysis demonstrate that the proposed matching score level fusion scheme using Weighted Sum rule, tanh normalization, iris-FVF and facial features extracted by LBP achieves a significant improvement over unimodal and multimodal methods. Support Vector Machine (SVM) and t-norm normalization are also used to improve the recognition performance of the proposed method.
dc.identifier.doi10.1007/s11760-014-0659-y
dc.identifier.endpage1198
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue6
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.orcid0000-0003-0887-3060
dc.identifier.scopus2-s2.0-84906303653
dc.identifier.scopusqualityQ2
dc.identifier.startpage1189
dc.identifier.urihttps://doi.org/10.1007/s11760-014-0659-y
dc.identifier.urihttps://hdl.handle.net/11129/12023
dc.identifier.volume8
dc.identifier.wosWOS:000340669700021
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofSignal Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectMultimodal biometrics
dc.subjectFace recognition
dc.subjectIris recognition
dc.subjectFeature extraction
dc.subjectInformation fusion
dc.subjectParticle Swarm Optimization
dc.titleFeature extractor selection for face-iris multimodal recognition
dc.typeArticle

Files