Bivariate substitutions from analytic kernels to fractional differintegral operators

dc.contributor.authorIsah, Sunday Simon
dc.contributor.authorFernandez, Arran
dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:37:30Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe study a general class of bivariate fractional integral operators, derived from bivariate analytic kernel functions by a double substitution of variables and a double convolution. We also study the associated bivariate fractional derivative operators, derived by combining partial derivatives with the aforementioned fractional integrals. These operators give rise to a theory of two-dimensional fractional calculus which is general enough to include many existing models involving different kernel functions with applications.
dc.identifier.doi10.1016/j.cnsns.2025.108774
dc.identifier.issn1007-5704
dc.identifier.issn1878-7274
dc.identifier.orcid0000-0002-6260-7196
dc.identifier.scopus2-s2.0-105000552976
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cnsns.2025.108774
dc.identifier.urihttps://hdl.handle.net/11129/12487
dc.identifier.volume146
dc.identifier.wosWOS:001456673400001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectBivariate fractional calculus
dc.subjectFractional partial differential equations
dc.subjectFractional integral operators
dc.subjectAnalytic kernel functions
dc.subjectLeibniz rule
dc.subjectDouble integral transforms
dc.titleBivariate substitutions from analytic kernels to fractional differintegral operators
dc.typeArticle

Files