Fusion at multiple radii: a rotation-invariant uniform LBP for finger-vein identification

dc.contributor.authorMokabberi, Amirhossein
dc.contributor.authorToygar, Onsen
dc.date.accessioned2026-02-06T18:35:42Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis study proposes a novel Multi-Radius Fused Rotational Invariant Uniform Local Binary Pattern variant for finger vein identification, specifically designed for systems with limited computational resources. The proposed operator, LBP(8,1),(16,1),(8,2)riu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{LBP}<^>{\textrm{riu2}}_{(8,1),(16,1),(8,2)}$$\end{document}, integrates three distinct radius configurations within a unified sliding window framework to capture multi-scale textural information and enhance discriminative capability. This texture-based feature extraction technique is systematically evaluated in combination with dimensionality reduction methods, including Principal Component Analysis (PCA), Two-Dimensional PCA (2DPCA), and Two-Directional Two-Dimensional PCA (2D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {2D}<^>2$$\end{document}PCA), to assess its robustness across diverse operational scenarios. Comprehensive experiments are conducted on the FV-USM, MMCBNU-6000, and UTFVP datasets. Performance evaluation is carried out using two fusion strategies across three standard experimental protocols. Results demonstrate that the proposed method, along with its dimensionality-reduced variants, achieves competitive performance and outperforms traditional hand-crafted techniques. Furthermore, comparative analyses with the state-of-the-art approaches confirm the effectiveness of the proposed texture-based method. This research establishes the practical performance boundaries of classical feature extraction techniques, with results rigorously validated using Cumulative Match Characteristic (CMC) curves.
dc.identifier.doi10.1007/s11760-025-05009-3
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue17
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.orcid0009-0002-4236-8893
dc.identifier.scopus2-s2.0-105024070406
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s11760-025-05009-3
dc.identifier.urihttps://hdl.handle.net/11129/12047
dc.identifier.volume19
dc.identifier.wosWOS:001631365400009
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofSignal Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFinger vein identification
dc.subjectBiometrics
dc.subjectFeature extraction
dc.subjectFusion
dc.subjectDimensionality reduction
dc.subjectLocal Binary Patterns (LBP)
dc.titleFusion at multiple radii: a rotation-invariant uniform LBP for finger-vein identification
dc.typeArticle

Files