Fusion at multiple radii: a rotation-invariant uniform LBP for finger-vein identification
| dc.contributor.author | Mokabberi, Amirhossein | |
| dc.contributor.author | Toygar, Onsen | |
| dc.date.accessioned | 2026-02-06T18:35:42Z | |
| dc.date.issued | 2025 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | This study proposes a novel Multi-Radius Fused Rotational Invariant Uniform Local Binary Pattern variant for finger vein identification, specifically designed for systems with limited computational resources. The proposed operator, LBP(8,1),(16,1),(8,2)riu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{LBP}<^>{\textrm{riu2}}_{(8,1),(16,1),(8,2)}$$\end{document}, integrates three distinct radius configurations within a unified sliding window framework to capture multi-scale textural information and enhance discriminative capability. This texture-based feature extraction technique is systematically evaluated in combination with dimensionality reduction methods, including Principal Component Analysis (PCA), Two-Dimensional PCA (2DPCA), and Two-Directional Two-Dimensional PCA (2D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {2D}<^>2$$\end{document}PCA), to assess its robustness across diverse operational scenarios. Comprehensive experiments are conducted on the FV-USM, MMCBNU-6000, and UTFVP datasets. Performance evaluation is carried out using two fusion strategies across three standard experimental protocols. Results demonstrate that the proposed method, along with its dimensionality-reduced variants, achieves competitive performance and outperforms traditional hand-crafted techniques. Furthermore, comparative analyses with the state-of-the-art approaches confirm the effectiveness of the proposed texture-based method. This research establishes the practical performance boundaries of classical feature extraction techniques, with results rigorously validated using Cumulative Match Characteristic (CMC) curves. | |
| dc.identifier.doi | 10.1007/s11760-025-05009-3 | |
| dc.identifier.issn | 1863-1703 | |
| dc.identifier.issn | 1863-1711 | |
| dc.identifier.issue | 17 | |
| dc.identifier.orcid | 0000-0001-7402-9058 | |
| dc.identifier.orcid | 0009-0002-4236-8893 | |
| dc.identifier.scopus | 2-s2.0-105024070406 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1007/s11760-025-05009-3 | |
| dc.identifier.uri | https://hdl.handle.net/11129/12047 | |
| dc.identifier.volume | 19 | |
| dc.identifier.wos | WOS:001631365400009 | |
| dc.identifier.wosquality | Q3 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Springer London Ltd | |
| dc.relation.ispartof | Signal Image and Video Processing | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Finger vein identification | |
| dc.subject | Biometrics | |
| dc.subject | Feature extraction | |
| dc.subject | Fusion | |
| dc.subject | Dimensionality reduction | |
| dc.subject | Local Binary Patterns (LBP) | |
| dc.title | Fusion at multiple radii: a rotation-invariant uniform LBP for finger-vein identification | |
| dc.type | Article |










