Korovkin Type Approximation Theorems Proved viaWeighted ??-equistatistical Convergence for Bivariate Functions

dc.contributor.authorAktuglu, Huseyin
dc.contributor.authorGezer, Halil
dc.date.accessioned2026-02-06T18:26:58Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractStatistical convergence was extended to weighted statistical convergence in [24], by using a sequence of real numbers s(k), satisfying some conditions. Later, weighted statistical convergence was considered in [35] and [19] with modified conditions on s(k). Weighted statistical convergence is an extension of statistical convergence in the sense that, for s(k) = 1, for all k, it reduces to statistical convergence. A definition of weighted alpha beta-statistical convergence of order gamma, considered in [25] does not have this property. To remove this extension problem the definition given in [25] needs some modifications. In this paper, we introduced the modified version of weighted alpha beta-statistical convergence of order gamma, which is an extension of alpha beta-statistical convergence of order gamma. Our definition, with s(k) = 1, for all k, reduces to alpha beta-statistical convergence of order gamma. Moreover, we use this definition of weighted alpha beta-statistical convergence of order gamma, to prove Korovkin type approximation theorems via, weighted alpha beta-equistatistical convergence of order gamma and weighted alpha beta-statistical uniform convergence of order gamma, for bivariate functions on [0, infinity) x [0, infinity). Also we prove Korovkin type approximation theorems via alpha beta-equistatistical convergence of order gamma and alpha beta-statistical uniform convergence of order gamma, for bivariate functions on [0, infinity) x [0, infinity). Some examples of positive linear operators are constructed to show that, our approximation results works, but its classical and statistical cases do not work. Finally, rates of weighted alpha beta-equistatistical convergence of order gamma is introduced and discussed.
dc.identifier.doi10.2298/FIL1818253A
dc.identifier.endpage6266
dc.identifier.issn0354-5180
dc.identifier.issue18
dc.identifier.scopus2-s2.0-85061427947
dc.identifier.scopusqualityQ2
dc.identifier.startpage6253
dc.identifier.urihttps://doi.org/10.2298/FIL1818253A
dc.identifier.urihttps://hdl.handle.net/11129/10728
dc.identifier.volume32
dc.identifier.wosWOS:000461186000010
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Nis, Fac Sci Math
dc.relation.ispartofFilomat
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectStatistical convergence
dc.subjectalpha beta-statistical convergence
dc.subjectequistatistical convergence
dc.subjectweighted statistical convergence
dc.subjectPositive linear operators
dc.subjectKorovkin type approximation theorem
dc.subjectrates of convergence
dc.titleKorovkin Type Approximation Theorems Proved viaWeighted ??-equistatistical Convergence for Bivariate Functions
dc.typeArticle

Files