Hysteretic hopfield neural network detection of multi-user CDMA signals

dc.contributor.authorSoujeri, Ebrahim Ali
dc.contributor.authorBilgekul, Hüseyin
dc.date.accessioned2026-02-06T17:58:30Z
dc.date.issued2005
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionIEEE 13th Signal Processing and Communications Applications Conference, SIU 2005 --
dc.description.abstractMulti-user reception using Hopfield Neural Network (HNN) and Hysteretic Hopfield Neural Network (HHNN) for Multi-Carrier Code Division Multiple Access (MC-CDMA) is investigated. We have shown that by the appropriate choice of Hopfield Neural Network parameters from the communication system, Hopfield Neural Network can collectively resolve multiple-access interference in the system. The "hysteretic" Hopfield Neural Network detector performance is investigated and compared in various asynchronous, Gaussian and multipath channel conditions with respect to varying near-far conditions expressed as E<inf>i</inf>/E<inf>1</inf>. The investigations have shown that the application of hysteresis provides some performance improvement in terms of BER. The BER improvement provided by hysteresis is more noticable at higher desired signal to noise ratios E<inf>1</inf>/N<inf>o</inf>. © 2005 IEEE.
dc.identifier.doi10.1109/SIU.2005.1567706
dc.identifier.endpage407
dc.identifier.isbn9780780392397
dc.identifier.isbn0780392396
dc.identifier.scopus2-s2.0-33846624304
dc.identifier.scopusqualityN/A
dc.identifier.startpage404
dc.identifier.urihttps://doi.org/10.1109/SIU.2005.1567706
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7610
dc.identifier.volume2005
dc.indekslendigikaynakScopus
dc.language.isotr
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectHysteretic Hopfield Neural Network (HHNN)
dc.subjectMulti-Carrier Code Division Multiple Access (MC-CDMA)
dc.subjectMultipath channel conditions
dc.subjectCode division multiple access
dc.subjectCommunication systems
dc.subjectHysteresis
dc.subjectParameter estimation
dc.subjectSignal processing
dc.subjectNeural networks
dc.titleHysteretic hopfield neural network detection of multi-user CDMA signals
dc.title.alternativeHisterezli hopfield sinir-a?lari ile çok-kullanicili KBÇE işaretlerinin sezimi
dc.typeConference Object

Files