On delay-independent stability of linear systems: Generalized Lyapunov equation

dc.contributor.authorYu, Runyi
dc.date.accessioned2026-02-06T17:58:56Z
dc.date.issued2015
dc.departmentDoğu Akdeniz Üniversitesi
dc.description1999 European Control Conference, ECC 1999 -- 1999-08-31 through 1999-09-03 -- Karlsruhe -- 112175
dc.description.abstractThis paper presents some delay-independent stability criteria for linear systems with time delay in the form x(t) = Ax(t) + Bx(t - ?). The main result states that the system is asymptotically stable independent of delay if there are positive scalar a and positive definite matrices P and Q satisfying a generalized Lyapunov equation ATP + PA + ?-1BTPB + ?P + Q = 0. Optimization of the main result and comparison with other criteria are made through analysis and examples. It is shown that the present criteria are less conservative for a class of linear systems. The computation involves a convex optimization problem over only one positive parameter ?. © 1999 EUCA.
dc.identifier.doi10.23919/ecc.1999.7099352
dc.identifier.endpage496
dc.identifier.isbn9783952417355
dc.identifier.scopus2-s2.0-84930583193
dc.identifier.scopusqualityN/A
dc.identifier.startpage493
dc.identifier.urihttps://doi.org/10.23919/ecc.1999.7099352
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7834
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectDelay-independent Stability
dc.subjectGeneralized Lyapunov equation
dc.subjectTime delay systems
dc.titleOn delay-independent stability of linear systems: Generalized Lyapunov equation
dc.typeConference Object

Files