Comprehensive assessment on estimating the thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys using machine learning techniques

dc.contributor.authorHabib, Ahed
dc.contributor.authorAlibrahim, Bashar
dc.contributor.authorAlnunu, Mahdi Z.
dc.contributor.authorMoussa, Hussein
dc.contributor.authorHabib, Maan
dc.date.accessioned2026-02-06T18:36:10Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractMulticomponent Fe-Cr-based alloys are extensively used in various industrial applications due to their favorable thermodynamic and mechanical properties. However, traditional methods of obtaining these properties are often experimentally intensive and resource-consuming. This study investigates the performance of 11 different machine learning algorithms to predict the mixing enthalpy, Young's modulus, and the shear-to-bulk modulus ratio of Fe-Cr alloys with additions of Ni, Mo, Al, W, V, and Nb. Moreover, it and performs a sensitivity assessment of the key factors affecting these properties of Fe-Cr alloys. Within the study context, the models applied include a mix of simplified and advanced techniques, such as multiple linear regression, artificial neural networks, random forest, and gradient boosting. Accordingly, the significance of this research lies in enhancing the design process of Fe-Cr alloys by providing accurate and computationally efficient predictions of essential material properties and reporting important insights on factors affecting their performance through a machine learning-based sensitivity analysis.
dc.identifier.doi10.1007/s43939-025-00255-1
dc.identifier.issn2730-7727
dc.identifier.issue1
dc.identifier.orcid0000-0001-5607-9334
dc.identifier.orcid0000-0002-0102-8852
dc.identifier.orcid0000-0002-2078-9454
dc.identifier.orcid0000-0002-7282-5656
dc.identifier.scopus2-s2.0-105003265277
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s43939-025-00255-1
dc.identifier.urihttps://hdl.handle.net/11129/12243
dc.identifier.volume5
dc.identifier.wosWOS:001474336300002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringernature
dc.relation.ispartofDiscover Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFe-Cr alloys
dc.subjectMachine learning
dc.subjectThermodynamic properties
dc.subjectElastic properties
dc.titleComprehensive assessment on estimating the thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys using machine learning techniques
dc.typeArticle

Files