A Comparative Analysis of Machine Learning Techniques for Credit Scoring

dc.contributor.authorNwulu, Nnamdi
dc.contributor.authorOroja, Shola
dc.contributor.authorİlkan, Mustafa
dc.date.accessioned2016-03-07T11:50:56Z
dc.date.available2016-03-07T11:50:56Z
dc.date.issued2012-10
dc.departmentSchool of Computing And Technologyen_US
dc.descriptionThe file in this item is the publisher version (published version) of the article.en_US
dc.description.abstractAbstract Credit Scoring has become an oft researched topic in light of the increasing volatility of the global economy and the recent world financial crisis. Amidst the many methods used for credit scoring, machine learning techniques are becoming increasingly popular due to their efficient and accurate nature and relative simplicity. Furthermore machine learning techniques minimize the risk of human bias and error and maximize speed as they are able to perform computationally difficult tasks in very short times.en_US
dc.identifier.endpage4129en_US
dc.identifier.issn1343-4500
dc.identifier.issue10en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage4129en_US
dc.identifier.urihttps://hdl.handle.net/11129/2207
dc.identifier.volume15en_US
dc.identifier.wosWOS:000308510100023
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherInformation - Yamaguchien_US
dc.relation.ispartofInformation - Yamaguchi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectCredit Scoringen_US
dc.subjectMachine Learningen_US
dc.subjectSupport Vector Machinesen_US
dc.titleA Comparative Analysis of Machine Learning Techniques for Credit Scoringen_US
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
f305f6bb2d9411c2623135f5a1196392.pdf
Size:
50.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: