Partitioning-based face recognition using PCA, LDA and ICA

dc.contributor.authorToygar, Önsen
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T18:01:05Z
dc.date.issued2005
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractPartitioning approaches for facial images are presented for the improvement of the recognition performance of appearance-based statistical methods Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA). A face image is partitioned into several equal-width vertical or horizontal segments and a multiple classifier based divide-and-conquer approach is used to combine the recognition results associated with these segments to recognize the whole face. The experiments demonstrate that vertical and horizontal partitioning result in a better recognition performance compared to the performance results of the holistic PCA, LDA and ICA methods.
dc.identifier.endpage1178
dc.identifier.issn1109-2750
dc.identifier.issue9
dc.identifier.scopus2-s2.0-24344467497
dc.identifier.scopusqualityN/A
dc.identifier.startpage1171
dc.identifier.urihttps://hdl.handle.net/11129/8280
dc.identifier.volume4
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofWSEAS Transactions on Computers
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectAppearance-based statistical methods
dc.subjectClassifier combination
dc.subjectFeature-based face recognition
dc.subjectICA
dc.subjectLDA
dc.subjectMultiple classier systems
dc.subjectPCA
dc.titlePartitioning-based face recognition using PCA, LDA and ICA
dc.typeArticle

Files