On Picard-Fuchs type equations related to integrable Hamiltonian systems

dc.contributor.authorPrykarpatski, Anatolij
dc.contributor.authorTaneri, Ufuk
dc.contributor.authorSamoilenko, Valerii H.
dc.date.accessioned2026-02-06T18:01:16Z
dc.date.issued2001
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe structure properties of integral submanifold imbedding mapping for a class of algebraically Liouville integrable Hamiltonian systems on cotangent phase spaces are studied in relation with Picard -Fuchs type equations. It is shown that these equations can be constructed by making use of a given a priori set of involutive invariants and proved that their solutions in the Hamilton-Jacobi separable variable case give rise to the integral submanifold imbedding mapping, which is known to be a main ingredient for Liouville-Arnold integrability by quadratures of the Hamiltonian system under consideration.
dc.identifier.endpage138
dc.identifier.issn1607-2510
dc.identifier.scopus2-s2.0-3042535706
dc.identifier.scopusqualityQ4
dc.identifier.startpage130
dc.identifier.urihttps://hdl.handle.net/11129/8379
dc.identifier.volume1
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofApplied Mathematics E - Notes
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.titleOn Picard-Fuchs type equations related to integrable Hamiltonian systems
dc.typeArticle

Files