Experimental and Numerical Investigation on The Elastic Properties of Natural Fiber Composites

dc.contributor.advisorZeeshan, Qasim (Co-Supervisor)
dc.contributor.advisorSafaei, Babak (Supervisor)
dc.contributor.authorAlhijazi, Mohamad
dc.date.accessioned2025-07-30T10:46:45Z
dc.date.available2025-07-30T10:46:45Z
dc.date.issued2021-08
dc.date.submitted2021-08
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Mechanical Engineeringen_US
dc.descriptionDoctor of Philosophy in Mechanical Engineering. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Engineering, Dept. of Mechanical Engineering, 2021. Co-Supervisor: Assoc. Prof. Dr. Qasim Zeeshan and Supervisor: Asst. Prof. Dr. Babak Safaeien_US
dc.description.abstractIn recent years, the application of natural fibers as reinforcement in composite structures has received increasing attention due to their advantages of low cost, environmental friendliness and favorable biocompatibility over synthetic fiber composite materials. The present work is an investigation on the tensile properties of palm as well as luffa natural fiber composites (NFC) in high density polyethylene (HDPE), polypropylene (PP), epoxy, and ecopoxy (BioPoxy 36) matrices, taking into consideration the effect of fibers volume fraction (Vf) variation. Finite element analysis i.e. representative volume element (RVE) models with unidirectional and chopped random fiber orientations, as well as analytical simulation i.e. Rule of Mixture (ROM), Halpin-Tsai, Chamis, and Nielsen approaches were utilized for predicting the elastic properties. Tensile test following ASTM D3039 standard was conducted. Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Support Vector Machine were implemented for defining the design space upon the considered parameters and evaluating the reliability of these machine learning approaches in predicting the tensile strength of natural fibers composites. Furthermore, biopoxy 36 with 0.3 luffa fibers exhibited the highest tensile strength. Finite element analysisfindings profusely agreed with the experimental results. ANFIS machine learning (ML) tool showed least prediction error in predicting tensile strength of natural fibers composites.en_US
dc.description.abstractÖZ: Son yıllarda, doğal liflerin kompozit yapılarda takviye olarak uygulanması, sentetik lifli kompozit malzemelere göre düşük maliyet, çevre dostu olma ve uygun biyouyumluluk avantajları nedeniyle artan bir ilgi görmüştür. Bu çalışma, yüksek yoğunluklu polietilen (HDPE), polipropilen (PP), Epoksi ve Ecopoxy (BioPoxy 36) matrislerinde palmiye'nin yanı sıra lif kabağı doğal elyaf kompozitlerinin (NFC) çekme özellikleri üzerinde, etkiyi dikkate alarak bir araştırmadır. liflerin hacim oranı (Vf) varyasyonu. Elastik özellikleri tahmin etmek için sonlu eleman analizi, yani tek yönlü ve doğranmış rastgele fiber yönelimli temsili hacim elemanı (RVE) modelleri ve analitik simülasyon, yani karışım kuralı (ROM), Halpin-Tsai, Chamis ve Nielsen yaklaşımları kullanılmıştır. ASTM D3039 standardına göre çekme testi yapılmıştır. Tasarım uzayını göz önüne alınan parametreler üzerinden tanımlamak ve bu makine öğrenmesi yaklaşımlarının doğal elyaf kompozitlerinin çekme mukavemetini tahmin etmedeki güvenilirliğini değerlendirmek için Yapay Sinir Ağı, Çoklu Doğrusal Regresyon, Uyarlamalı Nöro-Bulanık Çıkarım Sistemi ve Destek Vektör Makinesi uygulandı. Ayrıca, 0,3 lifli BioPoxy 36 en yüksek gerilme mukavemetini sergiledi. Sonlu Elemanlar Analizi (finite element analysis) bulguları deneysel sonuçlarla büyük ölçüde uyumluydu. ANFIS ML aracı, doğal lifli kompozitlerin gerilme mukavemetini tahmin etmede en az tahmin hatası gösterdi.en_US
dc.identifier.citationAlhijazi, Mohamad. (2021). Experimental and Numerical Investigation on The Elastic Properties of Natural Fiber Composites. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mechanical Engineering, Famagusta: North Cyprusen_US
dc.identifier.urihttps://hdl.handle.net/11129/6460
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThesis Tezen_US
dc.subjectMechanical Engineeringen_US
dc.subjectMaterial--Materials Engineeringen_US
dc.subjectViscoelastic materialsen_US
dc.subjectNatural Fibers Compositesen_US
dc.subjectPalm Fibersen_US
dc.subjectLuffa Fibersen_US
dc.subjectThermoplastics and Thermosets Matricesen_US
dc.subjectNumerical and Analytical Simulationen_US
dc.subjectMachine Learningen_US
dc.titleExperimental and Numerical Investigation on The Elastic Properties of Natural Fiber Compositesen_US
dc.typeDoctoral Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alhijazimohamad-Ph.D..pdf
Size:
2.73 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Doctoral

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: