Approximation by Genuine q-Bernstein-Durrmeyer Polynomials in Compact Disks in the Case q > 1

dc.contributor.authorMahmudov, Nazim I.
dc.date.accessioned2026-02-06T18:51:49Z
dc.date.issued2014
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper deals with approximating properties of the newly defined q-generalization of the genuine Bernstein-Durrmeyer polynomials in the case q > 1, which are no longer positive linear operators on C[0, 1]. Quantitative estimates of the convergence, the Voronovskaja-type theorem, and saturation of convergence for complex genuine q-Bernstein-Durrmeyer polynomials attached to analytic functions in compact disks are given. In particular, it is proved that, for functions analytic in {z is an element of C : vertical bar z vertical bar < R}, R > q, the rate of approximation by the genuine q-Bernstein-Durrmeyer polynomials (q > 1) is of order q(-n) versus 1/n for the classical genuine Bernstein-Durrmeyer polynomials. We give explicit formulas of Voronovskaja type for the genuine q-Bernstein-Durrmeyer for q > 1. This paper represents an answer to the open problem initiated by Gal in (2013, page 115).
dc.identifier.doi10.1155/2014/959586
dc.identifier.issn1085-3375
dc.identifier.issn1687-0409
dc.identifier.scopus2-s2.0-84897540115
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2014/959586
dc.identifier.urihttps://hdl.handle.net/11129/15542
dc.identifier.wosWOS:000333614500001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.relation.ispartofAbstract and Applied Analysis
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectConvergence
dc.subjectOperators
dc.subjectSaturation
dc.titleApproximation by Genuine q-Bernstein-Durrmeyer Polynomials in Compact Disks in the Case q > 1
dc.typeArticle

Files