Reduced-complexity deterministic annealing for vector quantizer design

dc.contributor.authorDemirciler, K
dc.contributor.authorOrtega, A
dc.date.accessioned2026-02-06T18:52:34Z
dc.date.issued2005
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper presents a reduced-complexity deterministic annealing (DA) approach for vector quantizer (VQ) design by using soft information processing with simplified assignment measures. Low-complexity distributions are designed to mimic the Gibbs distribution, where the latter is the optimal distribution used in the standard DA method. These low-complexity distributions are simple enough to facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to result in near-optimal performance. We have also derived the theoretical performance loss at a given system entropy due to using the simple soft measures instead of the optimal Gibbs measure. We use the derived result to obtain optimal annealing schedules for the simple soft measures that approximate the annealing schedule for the optimal Gibbs distribution. The proposed reduced-complexity DA algorithms have significantly improved the quality of the final codebooks compared to the generalized Lloyd algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest neighbor (PNN) codebook initialization. The proposed algorithms are able to evade the local minima and the results show that they are not sensitive to the choice of the initial codebook. Compared to the standard DA approach, the reduced-complexity DA algorithms can operate over 100 times faster With negligible performance difference. For example, for the design of a 16-dimensional vector quantizer having a rate of 0.4375 bit/sample for Gaussian source, the standard DA algorithm achieved 3.60 dB performance in 16 483 CPU seconds, whereas the reduced-complexity DA algorithm achieved the same performance in 136 CPU seconds. Other than VQ design, the DA techniques are applicable to problems such as classification, clustering, and resource allocation.
dc.identifier.doi10.1155/ASP.2005.1807
dc.identifier.endpage1820
dc.identifier.issn1110-8657
dc.identifier.issn1687-0433
dc.identifier.issue12
dc.identifier.scopus2-s2.0-28844455618
dc.identifier.scopusqualityN/A
dc.identifier.startpage1807
dc.identifier.urihttps://doi.org/10.1155/ASP.2005.1807
dc.identifier.urihttps://hdl.handle.net/11129/15580
dc.identifier.volume2005
dc.identifier.wosWOS:000233743200003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherHindawi Ltd
dc.relation.ispartofEurasip Journal on Applied Signal Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectdeterministic annealing
dc.subjectcomplexity reduction
dc.subjectvector quantization
dc.subjectstochastic relaxation
dc.subjectGibbs distribution
dc.subjectcodebook initialization
dc.titleReduced-complexity deterministic annealing for vector quantizer design
dc.typeArticle

Files