Extending Sonine kernels to arbitrary dimensions

dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:36:08Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe theory of general fractional calculus with Sonine kernels has been well developed by Luchko in the one-dimensional case. Inspired by recent work on Mikusi & nacute;ski's operational calculus for fractional partial differential operators, we construct a multi-dimensional version of the theory of Sonine kernels, solving a recognised open problem in the field. Starting from a generalised version of the classical Sonine convolution condition, we construct fractional integral and derivative operators in arbitrary dimensions, and examine their properties such as fundamental theorems of fractional calculus. Illustrative examples of the general theory are also included.
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TUBITAK)
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK).
dc.identifier.doi10.1007/s43037-025-00412-x
dc.identifier.issn2662-2033
dc.identifier.issn1735-8787
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85219067469
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s43037-025-00412-x
dc.identifier.urihttps://hdl.handle.net/11129/12232
dc.identifier.volume19
dc.identifier.wosWOS:001431969100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Basel Ag
dc.relation.ispartofBanach Journal of Mathematical Analysis
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional calculus
dc.subjectSonine kernels
dc.subjectFractional partial differential operators
dc.subjectFundamental theorem of fractional calculus
dc.titleExtending Sonine kernels to arbitrary dimensions
dc.typeArticle

Files