A Novel Particle Filter Optimization Algorithm for the solution of Single-objective Numerical Optimization Problems

dc.contributor.authorRostampour, Milad
dc.contributor.authorÜnveren, Ahmet
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T17:58:41Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description2024 Cognitive Models and Artificial Intelligence Conference, AICCONF 2024 -- 2024-05-25 through 2024-05-26 -- Istanbul -- 200487
dc.description.abstractThis paper introduces a novel approach combining Particle Filters and the L-BFGS-B optimization method for solving single-objective numerical optimization problems. The proposed method intricately marries the stochastic exploration of Particle Filters with the local optimization prowess of L-BFGS-B to navigate complex landscapes efficiently. Extensive experimentation on benchmark problems validates the approach's effectiveness, convergence speed, accuracy, and robustness. This fusion of methodologies opens new vistas for conquering diverse optimization challenges. © 2024 ACM.
dc.description.sponsorshipTokat Gaziosmanpasa Universitesi
dc.identifier.doi10.1145/3660853.3660914
dc.identifier.endpage207
dc.identifier.isbn9798400703638
dc.identifier.isbn9798400706714
dc.identifier.isbn9798400716928
dc.identifier.scopus2-s2.0-85197551500
dc.identifier.scopusqualityN/A
dc.identifier.startpage202
dc.identifier.urihttps://doi.org/10.1145/3660853.3660914
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7692
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAssociation for Computing Machinery
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20260204
dc.subjectevolutionary algorithms
dc.subjectoptimization
dc.subjectparticle filters
dc.titleA Novel Particle Filter Optimization Algorithm for the solution of Single-objective Numerical Optimization Problems
dc.typeConference Object

Files