Uncertainty quantification of multi-source hydrological data products for the improvement of water budget estimations in small-scale Sakarya basin, Turkey

dc.contributor.authorKayan, Gokhan
dc.contributor.authorTurker, Umut
dc.contributor.authorErten, Esra
dc.date.accessioned2026-02-06T18:45:45Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe present study aims to improve the efficacy of water budget (WB) estimations from various hydrological data products, by (1) evaluating the uncertainties of hydrological data products, (2) merging four precipitation and six evapotranspiration products using their error variances, and (3) employing the constrained Kalman filter (CKF) method to distribute residual errors among water budget components based on their relative uncertainties. The results show that applying bias correction before the merging process improved estimations of precipitation products with decreasing root mean square error (RMSE), except Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). Variable Infiltration Capacity (VIC) and bias-corrected Climate Prediction Center Morphing Technique (CMORPH) products outperformed other evapotranspiration and bias-corrected precipitation products, respectively, in terms of mean merging weights. The terrestrial water storage change is the primary reason for non-closure errors, mainly caused by the coarse resolution of Gravity Recovery and Climate Experiment (GRACE). The CKF results were insensitive to variations in uncertainties of runoff. Precipitation derived from the CKF was the best precipitation output, with the highest correlation coefficient (CC) and smallest root mean square deviation (RMSD).
dc.identifier.doi10.1080/02626667.2022.2093642
dc.identifier.endpage1622
dc.identifier.issn0262-6667
dc.identifier.issn2150-3435
dc.identifier.issue10
dc.identifier.orcid0000-0002-3459-2396
dc.identifier.orcid0000-0002-3164-7419
dc.identifier.orcid0000-0002-4208-7170
dc.identifier.scopus2-s2.0-85134588460
dc.identifier.scopusqualityQ2
dc.identifier.startpage1609
dc.identifier.urihttps://doi.org/10.1080/02626667.2022.2093642
dc.identifier.urihttps://hdl.handle.net/11129/13953
dc.identifier.volume67
dc.identifier.wosWOS:000829868800001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofHydrological Sciences Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectwater budget
dc.subjecthydrological data products
dc.subjectuncertainty quantification
dc.subjectdynamic modelling
dc.titleUncertainty quantification of multi-source hydrological data products for the improvement of water budget estimations in small-scale Sakarya basin, Turkey
dc.typeArticle

Files