Global monopole metric in 2+1 dimensions

dc.contributor.authorMazharimousavi, S. Habib
dc.contributor.authorHalilsoy, M.
dc.date.accessioned2026-02-06T18:51:42Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn order to obtain the geometry of a global monopole without cosmological constant and electric charge in 2 + 1 dimensions, we make use of the broken O(2) symmetry. In the absence of an exact solution, we determine the series solutions for both the metric and monopole functions in a consistent manner that satisfies all equations in appropriate powers. The new expansion elements are of the form 1/r(n)(In r)(m), for the radial distance r and positive integers m and n constrained by m <= n. To the lowest order of expansion, we find that in analogy with the negative cosmological constant the geometry of the global monopole acts repulsively, i.e. in the absence of a cosmological constant the global monopole plays at large distances the role of a negative cosmological constant.
dc.identifier.doi10.1142/S0219887819500063
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.issue1
dc.identifier.orcid0000-0002-7035-6155
dc.identifier.orcid0000-0001-9344-5786
dc.identifier.scopus2-s2.0-85056656496
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0219887819500063
dc.identifier.urihttps://hdl.handle.net/11129/15468
dc.identifier.volume16
dc.identifier.wosWOS:000456011700006
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Geometric Methods in Modern Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subject2+1 dimensions
dc.subjectglobal monopole
dc.subjectintegral equations
dc.titleGlobal monopole metric in 2+1 dimensions
dc.typeArticle

Files