Fractional differential relations for the Lerch zeta function

dc.contributor.authorFernandez, Arran
dc.contributor.authorDjida, Jean-Daniel
dc.date.accessioned2026-02-06T18:34:01Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe explore a recently opened approach to the study of zeta functions, namely the approach of fractional calculus. By utilising the machinery of fractional derivatives and integrals, which have rarely been applied in analytic number theory before, we are able to obtain some fractional differential relations and finally a partial differential equation of fractional type which is satisfied by the Lerch zeta function.
dc.description.sponsorshipDeutscher Akademischer Austauschdienst/German Academic Exchange Service (DAAD)
dc.description.sponsorshipThe second author's work is supported by the Deutscher Akademischer Austauschdienst/German Academic Exchange Service (DAAD).
dc.identifier.doi10.1007/s00013-021-01654-5
dc.identifier.endpage527
dc.identifier.issn0003-889X
dc.identifier.issn1420-8938
dc.identifier.issue5
dc.identifier.orcid0000-0002-4272-378X
dc.identifier.scopus2-s2.0-85115106337
dc.identifier.scopusqualityQ3
dc.identifier.startpage515
dc.identifier.urihttps://doi.org/10.1007/s00013-021-01654-5
dc.identifier.urihttps://hdl.handle.net/11129/11582
dc.identifier.volume117
dc.identifier.wosWOS:000696762700001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Basel Ag
dc.relation.ispartofArchiv Der Mathematik
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectLerch zeta function
dc.subjectFractional calculus
dc.subjectPartial differential equations of infinite orders
dc.titleFractional differential relations for the Lerch zeta function
dc.typeArticle

Files