Multi-objective optimization with cross entropy method

dc.contributor.authorUnveren, Ahmet
dc.contributor.authorAcan, Adrian
dc.date.accessioned2026-02-06T18:28:48Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionIEEE Congress on Evolutionary Computation -- SEP 25-28, 2007 -- Singapore, SINGAPORE
dc.description.abstractThis paper presents a novel multiobjective optimization strategy based on the cross entropy method (MOCE). The cross-entropy method (CE) is a stochastic learning algorithm inspired from rare event simulations and proved to be successful in the solution of difficult single objective real-valued optimization problems. The presented work extends the use of cross-entropy method to real-valued multiobjective optimization. For this purpose, parameters of CE search are adapted using the information collected from clustered nondominated solutions on the Pareto front. Comparison with well known multiobjective optimization algorithms on the solution of provably difficult benchmark problem instances demonstrated that CEMO performs at least as good as its competitors.
dc.description.sponsorshipIEEE
dc.identifier.endpage3071
dc.identifier.isbn978-1-4244-1339-3
dc.identifier.scopusqualityN/A
dc.identifier.startpage3065
dc.identifier.urihttps://hdl.handle.net/11129/11123
dc.identifier.wosWOS:000256053702019
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2007 Ieee Congress on Evolutionary Computation, Vols 1-10, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleMulti-objective optimization with cross entropy method
dc.typeConference Object

Files