Histogram based face recognition system

dc.contributor.authorDemirel, Hasan
dc.contributor.authorAnbarjafari, Gholamreza
dc.date.accessioned2026-02-06T18:01:14Z
dc.date.issued2009
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractA practical face recognition system using HSI (hue, saturation, and intensity) color space based on color histogram matching is described. The threshold for hue and saturation is found by using 450 face samples from the FERET dataset and 1500 face samples from the Essex University database. Assuming that all face images in a dataset are of the same size, eigenfaces are obtained as the eigenvectors of the covariance matrix of the data points. The histogram-based post invariant face recognition study shows that a typical monochrome image with 8-bit representation has 256 grey levels. The performance of each color channel is found to be different and this observation allows combining the results of different color channels. which may increase the probability of making the correct recognition of a face image.
dc.identifier.endpage37
dc.identifier.issn1365-4675
dc.identifier.issue1884
dc.identifier.scopus2-s2.0-77952374742
dc.identifier.scopusqualityQ4
dc.identifier.startpage32
dc.identifier.urihttps://hdl.handle.net/11129/8349
dc.identifier.volume115
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofElectronics World
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectColor channels
dc.subjectColor histogram
dc.subjectColor space
dc.subjectData points
dc.subjectData sets
dc.subjectEigenfaces
dc.subjectEigenvectors
dc.subjectFace images
dc.subjectFace recognition systems
dc.subjectGrey levels
dc.subjectMonochrome images
dc.subjectColor
dc.subjectColor matching
dc.subjectCovariance matrix
dc.subjectGraphic methods
dc.subjectImage enhancement
dc.subjectFace recognition
dc.titleHistogram based face recognition system
dc.typeArticle

Files