Implicit Method of High Accuracy on Hexagonal Grids for Approximating the Solution to Heat Equation on Rectangle

dc.contributor.authorBuranay, Suzan C.
dc.contributor.authorArshad, Nouman
dc.date.accessioned2026-02-06T18:17:27Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description4th International Conference of Mathematical Sciences (ICMS) -- JUN 17-21, 2020 -- Maltepe Univ, ELECTR NETWORK
dc.description.abstractA two layer Implicit method on hexagonal grids is proposed for approximating the solution to first type boundary value problem of heat equation on rectangle. It is proven that the given implicit scheme is unconditionally stable and converges to the exact solution on the grids of order O(h(4) + t(2)) where, h and root 3/2 h are the step sizes in space variables x(1) and x(2) respectively and t is the step size in time. The method is applied on a test problem and the obtained numerical results justify the given theoretical results.
dc.identifier.doi10.1063/5.0042186
dc.identifier.isbn978-0-7354-4078-4
dc.identifier.issn0094-243X
dc.identifier.scopus2-s2.0-85102235319
dc.identifier.scopusqualityQ4
dc.identifier.urihttps://doi.org/10.1063/5.0042186
dc.identifier.urihttps://hdl.handle.net/11129/8976
dc.identifier.volume2334
dc.identifier.wosWOS:000664201400009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Physics
dc.relation.ispartofFourth International Conference of Mathematical Sciences (Icms 2020)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFinite difference method
dc.subjectHexagonal grid
dc.subjectStability analysis
dc.subjectError bounds
dc.subjectTwo dimensional heat equation
dc.titleImplicit Method of High Accuracy on Hexagonal Grids for Approximating the Solution to Heat Equation on Rectangle
dc.typeConference Object

Files