Optimal symbol-by-symbol detector for linear dispersive AWGN channels

dc.contributor.authorHacio?lu, Kadri
dc.date.accessioned2026-02-06T18:00:55Z
dc.date.issued1994
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionProceedings of the 7th Mediterranean Electrotechnical Conference - MELECON. Part 1 (of 3) --
dc.description.abstractIn this study, symbol detection in the presence of intersymbol interference and additive white Gaussian noise is considered. The optimal solution, in the sense of minimizing the symbol error, is obtained through the Bayes decision theory. It is shown that the optimal Bayesian detector has two different but equivalent realizations in the form of a multi-layer perceptron and a radial basis function network. The parameters of these networks can be optimally set if the channel characteristics are known. For unknown channel cases, a simple adaptive structure, which employs a channel estimator, is proposed.
dc.description.sponsorshipIEEE; Middle East Technical University; Bilkent University; Chamber of Electrical Engineers of Turkey
dc.identifier.scopus2-s2.0-0028492370
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/11129/8188
dc.identifier.volume1
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectCodes (symbols)
dc.subjectCommunication channels (information theory)
dc.subjectDecision theory
dc.subjectDetectors
dc.subjectFrequency response
dc.subjectNeural networks
dc.subjectOptimization
dc.subjectWhite noise
dc.subjectAdditive white Gaussian noise
dc.subjectBayes decision theory
dc.subjectChannel estimator
dc.subjectEquivalent realizations
dc.subjectLinear dispersive channels
dc.subjectMultilayer perceptron
dc.subjectOptimal symbol to symbol detector
dc.subjectRadial basis function network
dc.subjectSymbol error
dc.subjectSignal detection
dc.titleOptimal symbol-by-symbol detector for linear dispersive AWGN channels
dc.typeConference Object

Files