Voronovskaja type theorem for the Lupas, q-analogue of the Bernstein operators

dc.contributor.authorMahmudov, Nazim Idrisoglu
dc.contributor.authorSabancigil, Pembe
dc.date.accessioned2026-02-06T18:22:20Z
dc.date.issued2012
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we estimate the third and the fourth order central moments for the difference of the Lupas, q-analogue of the Bernstein operator and the limit q-Lupas, operator. We also prove a quantitative variant of Voronovskaja's theorem for R-n,R-q.
dc.identifier.endpage91
dc.identifier.issn1331-0623
dc.identifier.issue1
dc.identifier.scopusqualityQ3
dc.identifier.startpage83
dc.identifier.urihttps://hdl.handle.net/11129/9755
dc.identifier.volume17
dc.identifier.wosWOS:000305275500008
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherUniv Osijek, Dept Mathematics
dc.relation.ispartofMathematical Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectq-Bernstein polynomials
dc.subjectLupas
dc.subjectq-analogue
dc.subjectlimit q-Lupas
dc.subjectoperator
dc.subjectVoronovskaja-type formulas
dc.titleVoronovskaja type theorem for the Lupas, q-analogue of the Bernstein operators
dc.typeArticle

Files