On a highly accurate approximation of the first and pure second derivatives of the Laplace equation in a rectangular parallelpiped

dc.contributor.authorDosiyev, Adiguzel A.
dc.contributor.authorSadeghi, Hamid Mir-Mohammad
dc.date.accessioned2026-02-06T18:53:03Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe propose and justify difference schemes for the approximation of the first and pure second derivatives of a solution of the Dirichlet problem in a rectangular parallelepiped. The boundary values on the faces of the parallelepiped are supposed to have six derivatives satisfying the Holder condition, to be continuous on the edges, and to have second-and fourth-order derivatives satisfying the compatibility conditions resulting from the Laplace equation. We prove that the solutions of the proposed difference schemes converge uniformly on the cubic grid of order O(h(4)), where h is a grid step. Numerical experiments are presented to illustrate and support the analysis made.
dc.identifier.doi10.1186/s13662-016-0868-5
dc.identifier.issn1687-1847
dc.identifier.orcid0000-0001-9154-8116
dc.identifier.scopus2-s2.0-84975847403
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1186/s13662-016-0868-5
dc.identifier.urihttps://hdl.handle.net/11129/15819
dc.identifier.wosWOS:000391460700001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringeropen
dc.relation.ispartofAdvances in Difference Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectfinite difference method
dc.subjectapproximation of derivatives
dc.subjectuniform error
dc.subjectLaplace equation
dc.titleOn a highly accurate approximation of the first and pure second derivatives of the Laplace equation in a rectangular parallelpiped
dc.typeArticle

Files