Multi-objective optimization with cross entropy method: Stochastic learning with clustered pareto fronts

dc.contributor.authorÜnveren, Ahmet
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T17:54:33Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description2007 IEEE Congress on Evolutionary Computation, CEC 2007 --
dc.description.abstractThis paper presents a novel multiobjective optimization strategy based on the cross entropy method (MOCE). The cross-entropy method (CE) is a stochastic learning algorithm inspired from rare event simulations and proved to be successful in the solution of difficult single objective real-valued optimization problems. The presented work extends the use of cross-entropy method to real-valued multiobjective optimization. For this purpose, parameters of CE search are adapted using the information collected from clustered nondominated solutions on the Pareto front. Comparison with well known multiobjective optimization algorithms on the solution of provably difficult benchmark problem instances demonstrated that CEMO performs at least as good as its competitors. © 2007 IEEE.
dc.identifier.doi10.1109/CEC.2007.4424862
dc.identifier.endpage3071
dc.identifier.isbn1424413400
dc.identifier.isbn9781424413409
dc.identifier.scopus2-s2.0-78049466915
dc.identifier.scopusqualityN/A
dc.identifier.startpage3065
dc.identifier.urihttps://doi.org/10.1109/CEC.2007.4424862
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7446
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectCross entropy method
dc.subjectOptimization problems
dc.subjectComputer simulation
dc.subjectMultiobjective optimization
dc.subjectParameter estimation
dc.subjectPareto principle
dc.subjectProblem solving
dc.subjectRandom processes
dc.subjectLearning algorithms
dc.titleMulti-objective optimization with cross entropy method: Stochastic learning with clustered pareto fronts
dc.typeConference Object

Files