Two dimensional zero-attracting variable step-size LMS algorithm for sparse system identification

dc.contributor.authorJahromi, Mohammad N. S.
dc.contributor.authorHocanin, Aykut
dc.contributor.authorKukrer, Osman
dc.contributor.authorSalman, Mohammad Shukri
dc.date.accessioned2026-02-06T18:16:56Z
dc.date.issued2013
dc.departmentDoğu Akdeniz Üniversitesi
dc.description21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS
dc.description.abstractIn this paper, we introduce a two dimensional version of the zero-attracting variable step size LMS (ZA-VSSLMS) adaptive filter for image deconvolution. ZA-VSSLMS was proposed to improve the performance of the VSSLMS algorithm when the system is sparse. We design a new 2-D adaptive filter that not only updates its coefficients in both horizontal and vertical directions but more importantly improves the performance of the filter when the the point spread function (PSF) in an image deconvolution problem has a sparse structure. This is achieved by adding an l(1) norm penalty function into the original cost function of the VSSLMS algorithm. The simulation results show improved PSNR compared to 2-D VSSLMS algorithm.
dc.identifier.isbn978-1-4673-5563-6
dc.identifier.isbn978-1-4673-5562-9
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-84880896440
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/11129/8735
dc.identifier.wosWOS:000325005300082
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2013 21St Signal Processing and Communications Applications Conference (Siu)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectZA-VSSLMS Adaptive Filtering
dc.subjectCompressed Sensing
dc.subjectImage Deconvolution
dc.titleTwo dimensional zero-attracting variable step-size LMS algorithm for sparse system identification
dc.typeConference Object

Files