Relative controllability of linear state-delay fractional systems
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
In this paper, our focus is on exploring the relative controllability of systems governed by linear fractional differential equations incorporating state delay. We introduce a novel counterpart to the Cayley-Hamilton theorem. Leveraging a delayed perturbation of the Mittag-Leffler function, along with a determining function and an analog of the Cayley-Hamilton theorem, we establish an algebraic Kalman-type rank criterion for assessing the relative controllability of fractional differential equations with state delay. Moreover, we articulate necessary and sufficient conditions for relative controllability criteria concerning linear fractional time-delay systems, expressed in terms of a new alpha \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} -Gramian matrix and define a control which transfer the system from any initial state to any final state within a given time. The theoretical findings are exemplified through the presentation of illustrative examples.










