Numerical study and optimization of thermal efficiency for a pin fin heatsink with nanofluid flow by modifying heatsink geometry

dc.contributor.authorHeidarshenas, Behzad
dc.contributor.authorAbidi, Awatef
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorYuan, Yanjie
dc.contributor.authorEl-Shafay, A. S.
dc.contributor.authorAybar, Hikmet S.
dc.date.accessioned2026-02-06T18:37:35Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper presents a numerical study on the thermal efficiency of a pin fin heatsink (HEK). The working fluid used is an alumina/water nanofluid, which enters the HEK in a laminar flow regime and exits from its surroundings. This study involves varying the distance between circular pin fins, their height, and their diameter. By altering these parameters, we determine the values of thermal resistance (THR) and temperature uniformity (Teta) on the HEK, along with the heat transfer coefficient (HTC). We further optimize the obtained results using artificial intelligence techniques to minimize the THR of the HEK, maximize the HTC, and achieve the best Teta on the HEK. This numerical investigation employs a two-phase approach to model nanofluid flow within the HEK. The optimization process yields predictions with an accuracy of less than 4%. The findings reveal that increasing the height of the pin fins reduces the HTC and the heat capacity of the HEK, while simultaneously improving the Teta on the HEK. Expanding the distance between pin fins enhances the HTC, decreases the THR of the HEK, and further improves the Teta on the HEK. Similarly, augmenting the diameter of the pin fins amplifies the HTC, reduces the THR, and enhances the Teta on the HEK.
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University; [R.G.P.2/204/44]
dc.description.sponsorshipThe second author (Awatef Abidi) extends her appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number (R.G.P.2/204/44) .
dc.identifier.doi10.1016/j.csite.2024.104125
dc.identifier.issn2214-157X
dc.identifier.orcid0009-0004-4666-3704
dc.identifier.orcid0000-0003-4363-8904
dc.identifier.orcid0000-0002-7261-6686
dc.identifier.orcid0000-0003-3636-6605
dc.identifier.scopus2-s2.0-85186119037
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.csite.2024.104125
dc.identifier.urihttps://hdl.handle.net/11129/12546
dc.identifier.volume55
dc.identifier.wosWOS:001193990300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofCase Studies in Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectThermal resistance
dc.subjectTemperature uniformity
dc.subjectHeatsink
dc.subjectTwo-phase nanofluid
dc.subjectMachine learning
dc.titleNumerical study and optimization of thermal efficiency for a pin fin heatsink with nanofluid flow by modifying heatsink geometry
dc.typeArticle

Files