Facial expression recognition using 3D facial feature distances

dc.contributor.authorSoyel, Hamit
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:17:28Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description4th International Conference on Image Analysis and Recognition -- AUG 22-24, 2007 -- Montreal, CANADA
dc.description.abstractIn this paper, we propose a novel approach for facial expression analysis and recognition. The proposed approach relies on the distance vectors retrieved from 3D distribution of facial feature points to classify universal facial expressions. Neural network architecture is employed as a classifier to recognize the facial expressions from a distance vector obtained from 3D facial feature locations. Facial expressions such as anger, sadness, surprise, joy, disgust, fear and neutral are successfully recognized with an average recognition rate of 91.3%. The highest recognition rate reaches to 98.3% in the recognition of surprise.
dc.description.sponsorshipUniv Waterloo, Pattern Anal & Mach Intelligence Grp,Univ Porto, Fac Engn, Dept Elect & Comp Engn,,Inst Engenhar Biomed,IEEE Kitchener-Waterloo Sect
dc.identifier.endpage838
dc.identifier.isbn978-3-540-74258-6
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.orcid0000-0002-0305-574X
dc.identifier.scopus2-s2.0-37849024360
dc.identifier.scopusqualityQ3
dc.identifier.startpage831
dc.identifier.urihttps://hdl.handle.net/11129/8990
dc.identifier.volume4633
dc.identifier.wosWOS:000251191500074
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofImage Analysis and Recognition, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subject3D facial expression analysis
dc.subjectfacial feature points
dc.subjectneural networks
dc.titleFacial expression recognition using 3D facial feature distances
dc.typeConference Object

Files