A neuro-fuzzy graphic object classifier with modified distance measure estimator

dc.contributor.authorAliev, Rafik Aziz
dc.contributor.authorGuirimov, Babek Ghalib
dc.contributor.authorAliyev, Rashad R.
dc.date.accessioned2026-02-06T18:01:16Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe paper analyses issues leading to errors in graphic object classifiers. The distance measures suggested in literature and used as a basis in traditional, fuzzy, and Neuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized or fuzzy objects in which the features of classes are much more difficult to recognize because of significant uncertainties in their location and gray-levels. The authors suggest a neuro-fuzzy graphic object classifier with modified distance measure that gives better performance indices than systems based on traditional ordinary and cumulative distance measures. Simulation has shown that the quality of recognition significantly improves when using the suggested method.
dc.identifier.endpage15
dc.identifier.issn1735-0654
dc.identifier.issue1
dc.identifier.scopus2-s2.0-77953957576
dc.identifier.scopusqualityQ1
dc.identifier.startpage5
dc.identifier.urihttps://hdl.handle.net/11129/8389
dc.identifier.volume1
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofIranian Journal of Fuzzy Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectFuzzy logic
dc.subjectIF-THEN rules
dc.subjectNeural network
dc.subjectNeuro-fuzzy technology
dc.titleA neuro-fuzzy graphic object classifier with modified distance measure estimator
dc.typeArticle

Files