Thermomechanical properties of graphene: valence force field model approach

dc.contributor.authorLajevardipour, A.
dc.contributor.authorNeek-Amal, M.
dc.contributor.authorPeeters, F. M.
dc.date.accessioned2026-02-06T18:47:43Z
dc.date.issued2012
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractUsing the valence force field model of Perebeinos and Tersoff (2009 Phys. Rev. B 79 241409(R)), different energy modes of suspended graphene subjected to tensile or compressive strain are studied. By carrying out Monte Carlo simulations it is found that: (i) only for small strains (vertical bar epsilon vertical bar (sic) 0.02) is the total energy symmetrical in the strain, while it behaves completely differently beyond this threshold; (ii) the important energy contributions in stretching experiments are stretching, angle bending, an out-of-plane term, and a term that provides repulsion against pi-pi misalignment; (iii) in compressing experiments the two latter terms increase rapidly, and beyond the buckling transition stretching and bending energies are found to be constant; (iv) from stretching-compressing simulations we calculated the Young's modulus at room temperature 350 +/- 3.15 N m(-1), which is in good agreement with experimental results (340 +/- 50 N m(-1)) and with ab initio results (322-353) N m(-1); (v) molar heat capacity is estimated to be 24.64 J mol(-1) K-1 which is comparable with the Dulong-Petit value, i. e. 24.94 J mol(-1) K-1, and is almost independent of the strain; (vi) nonlinear scaling properties are obtained from height-height correlations at finite temperature; (vii) the used valence force field model results in a temperature independent bending modulus for graphene, and (viii) the Gruneisen parameter is estimated to be 0.64.
dc.description.sponsorshipFlemish science foundation (FWO-Vl); Belgium Science Policy (IAP)
dc.description.sponsorshipWe acknowledge helpful comments by V Perebeinos, S Costamagna, A Fasolino and J H Los. This work was supported by the Flemish science foundation (FWO-Vl) and the Belgium Science Policy (IAP).
dc.identifier.doi10.1088/0953-8984/24/17/175303
dc.identifier.issn0953-8984
dc.identifier.issn1361-648X
dc.identifier.issue17
dc.identifier.orcid0000-0003-1925-6113
dc.identifier.orcid0000-0001-7277-6965
dc.identifier.pmid22475745
dc.identifier.scopus2-s2.0-84859590036
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1088/0953-8984/24/17/175303
dc.identifier.urihttps://hdl.handle.net/11129/14526
dc.identifier.volume24
dc.identifier.wosWOS:000303499700012
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Physics-Condensed Matter
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectSuspended Graphene
dc.subjectHydrocarbons
dc.subjectMonolayer
dc.subjectGraphite
dc.titleThermomechanical properties of graphene: valence force field model approach
dc.typeArticle

Files