Brain MR Image Denoising for Rician Noise Using Intrinsic Geometrical Information

dc.contributor.authorSoyel, Hamit
dc.contributor.authorYurtkan, Kamil
dc.contributor.authorDemirel, Hasan
dc.contributor.authorMcOwan, Peter W.
dc.date.accessioned2026-02-06T18:17:09Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description30th International Symposium on Computer and Information Sciences (ISCIS) -- SEP 21-24, 2015 -- Imperial Coll, London, ENGLAND
dc.description.abstractA new image denoising algorithm based on nonsubsampled contourlet transform is presented. Magnetic Resonance (MR) images corrupted by Rician noise are transformed into multi-scale and multi-directional contour information, where a nonlinear mapping function is used to modify the contour coefficients at each level. The denoising is achieved by improving edge sharpness and inhibiting the background noise. Experiments show the proposed algorithm preserves the intrinsic geometrical information of the noised MR image and can be effectively applied to T1-, T2-, and PD-weighted MR images without any parameter tuning under diverse noise levels.
dc.identifier.doi10.1007/978-3-319-22635-4_25
dc.identifier.endpage284
dc.identifier.isbn978-3-319-22635-4
dc.identifier.issn1876-1100
dc.identifier.issn1876-1119
dc.identifier.orcid0000-0002-0305-574X
dc.identifier.scopus2-s2.0-84945934939
dc.identifier.scopusqualityQ4
dc.identifier.startpage275
dc.identifier.urihttps://doi.org/10.1007/978-3-319-22635-4_25
dc.identifier.urihttps://hdl.handle.net/11129/8845
dc.identifier.volume363
dc.identifier.wosWOS:000385253500025
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofInformation Sciences and Systems 2015
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectContourlet Transform
dc.titleBrain MR Image Denoising for Rician Noise Using Intrinsic Geometrical Information
dc.typeConference Object

Files