Wavelet-based deep learning for skin lesion classification

dc.contributor.authorSerte, Sertan
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:43:43Z
dc.date.issued2020
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractSkin lesions can be in malignant or benign forms. Benign skin lesion types are not deadly; however, malignant types of skin lesions can be fatal. Lethal forms are known as skin cancer. These types require urgent clinical treatment. Fast detection and diagnosis of malignant types of skin lesions might prevent life-threatening scenarios. This work presents two methods for the automatic classification of malignant melanoma and seborrhoeic keratosis lesions. The first method builds on modelling skin images together with wavelet coefficients. Approximate, horizontal, and vertical wavelet coefficients are obtained using the wavelet transform, and then deep learning (DL) models are generated for each of the representations and skin images. The second method builds on modelling skin images together with three approximate coefficients. This method utilises a sequential wavelet transformation to produce approximation coefficients. Then DL models are generated for each of the representations and skin images. Transfer learning-based ResNet-18 and ResNet-50 DL models provide model images and wavelet coefficients. Then skin lesion detection is achieved by fusing model output probabilities. Both proposed models outperform the methods only based on image data and other previously proposed methods.
dc.identifier.doi10.1049/iet-ipr.2019.0553
dc.identifier.endpage726
dc.identifier.issn1751-9659
dc.identifier.issn1751-9667
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85082003392
dc.identifier.scopusqualityQ2
dc.identifier.startpage720
dc.identifier.urihttps://doi.org/10.1049/iet-ipr.2019.0553
dc.identifier.urihttps://hdl.handle.net/11129/13746
dc.identifier.volume14
dc.identifier.wosWOS:000520961700015
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofIet Image Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectimage classification
dc.subjecttelemedicine
dc.subjectmedical image processing
dc.subjectwavelet transforms
dc.subjectlearning (artificial intelligence)
dc.subjectcancer
dc.subjectskin
dc.subjectbiomedical optical imaging
dc.subjectwavelet-based deep learning
dc.subjectskin lesion classification
dc.subjectskin lesions
dc.subjectmalignant forms
dc.subjectbenign forms
dc.subjectbenign skin lesion types
dc.subjectmalignant types
dc.subjectskin cancer
dc.subjectmalignant melanoma
dc.subjectseborrhoeic keratosis lesions
dc.subjectskin images
dc.subjectvertical wavelet coefficients
dc.subjectdeep learning models
dc.subjectapproximate coefficients
dc.subjectsequential wavelet transformation
dc.subjectapproximation coefficients
dc.subjecttransfer learning-based ResNet-18
dc.subjectmodel images
dc.subjectskin lesion detection
dc.titleWavelet-based deep learning for skin lesion classification
dc.typeArticle

Files