Selection of optimal dimensionality reduction methods for face recognition using genetic algorithms

dc.contributor.authorToygar, Ö
dc.contributor.authorAcan, A
dc.date.accessioned2026-02-06T18:17:15Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description3rd International Conference on Advances in Information Systems -- OCT 20-22, 2004 -- Izmir, TURKEY
dc.description.abstractA new approach for optimal selection of dimensionality reduction methods for individual classifiers within a multiple classifier system is introduced for the face recognition problem. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are used as the appearance-based statistical methods for dimensionality reduction. A face is partitioned into five segments and each segment is processed by a particular dimensionality reduction method. This results in a low-complexity divide-and-conquer approach, implemented as a multiple-classifier system where distance-based individual classifiers are built using appearance-based statistical methods. The decisions of individual classifiers are unified by an appropriate combination method. Genetic Algorithms (GAs) are used to select the optimal dimensionality reduction method for each individual classifier. Experiments are conducted to show that the proposed approach outperforms the holistic methods.
dc.description.sponsorshipSci & Tech Res Council Turkey,Dokuz Eylul Univ Presidents Off,Microsoft
dc.identifier.endpage481
dc.identifier.isbn3-540-23478-0
dc.identifier.issn0302-9743
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.scopus2-s2.0-35048848978
dc.identifier.scopusqualityQ3
dc.identifier.startpage472
dc.identifier.urihttps://hdl.handle.net/11129/8885
dc.identifier.volume3261
dc.identifier.wosWOS:000225078900048
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofAdvances in Information Systems, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectIndependent Component Analysis
dc.titleSelection of optimal dimensionality reduction methods for face recognition using genetic algorithms
dc.typeConference Object

Files