Continuous Moment-Based Features for Classification of Ground Vehicle SAR Images

dc.contributor.authorBolourchi, Pouya
dc.contributor.authorDemirel, Hasan
dc.contributor.authorUysal, Sener
dc.date.accessioned2026-02-06T18:16:39Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description10th UKSim-AMSS European Modelling Symposium on Computer Modelling and Simulation (EMS) -- NOV 28-30, 2016 -- Pisa, ITALY
dc.description.abstractIn this paper, four continuous moment-based feature extraction techniques for Synthetic Aperture Radar (SAR) images are examined. Geometric Moments (GMs), Legendre Moments (LMs), Zernike Moments (ZMs) and Pseudo Zernike Moments (PZMs) are introduced as a feature extraction for three types of ground vehicles from SAR images. GMs arc simplest moment that suffers from high degree of information redundancy since its basis is not orthogonal. LMs defined as a moment with orthogonal basis to overcome GMs drawback. Complex moments are defined as ZMs and PZMs and widely used because their polynomials are orthogonal to each other and are rotational invariant. However, PZMs have better feature representation capabilities than ZMs based method. In this context, we applied the four techniques on SAR images using Support Vector Machine (SVM) for classification. Experimental results have proven that the accuracy of ZMs and PZMs are superior to GMs and LMs, while LMs still has a better accuracy rather than GMs.
dc.description.sponsorshipNottingham Trent Univ,IEEE UK & RI Sect,UK Simulat Soc,Asia Modelling & Simulat Sect,IEEE Reg 8,Scuola Super Sant Anna,European Simulat Federat,European Council Modelling & Simulat,Manchester Metropolitan Univ,Univ Politecnica Madrid,Kingston Univ,Liverpool Univ,Univ Technol Malaysia,Univ Malaysia Pahang,Univ Malaysia Sabah,IEEE Comp Soc
dc.identifier.doi10.1109/EMS.2016.18
dc.identifier.endpage57
dc.identifier.isbn978-1-5090-4971-4
dc.identifier.issn2473-3539
dc.identifier.orcid0000-0002-5657-0833
dc.identifier.orcid0000-0003-3492-0617
dc.identifier.scopus2-s2.0-85020054780
dc.identifier.scopusqualityN/A
dc.identifier.startpage53
dc.identifier.urihttps://doi.org/10.1109/EMS.2016.18
dc.identifier.urihttps://hdl.handle.net/11129/8577
dc.identifier.wosWOS:000406227200008
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofUksim-Amss 10Th European Modelling Symposium on Computer Modelling and Simulation (Ems)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcomponent
dc.subjectfeature extraction
dc.subjectgeometric moments
dc.subjectlegendre moments
dc.subjectPseudo-Zernike moments
dc.subjectSynthetic Aperture Radar
dc.titleContinuous Moment-Based Features for Classification of Ground Vehicle SAR Images
dc.typeConference Object

Files