Asymptotic behavior of nonoscillatory solutions of second order nonlinear neutral differential equations

dc.contributor.authorHasanbulli, Mustafa
dc.contributor.authorRogovchenko, Yuri V.
dc.date.accessioned2026-02-06T18:22:14Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe study asymptotic behavior of solutions of second order nonlinear neutral differential equations of the form (x(t)+p(t)X(t - tau)) +f (t,x(t),x(p(tt), x'(t),x'(sigma(t))) = 0. First we prove that solutions can be indefinitely continued to the right. Then, using the celebrated Bihari integral inequality, we obtain conditions for all nonoscillatory solutions to behave at infinity like nontrivial linear functions. Our theorems complement and extend recent results reported in the literature.
dc.identifier.endpage618
dc.identifier.issn1331-4343
dc.identifier.issue3
dc.identifier.orcid0000-0002-6463-741X
dc.identifier.scopus2-s2.0-34547680052
dc.identifier.scopusqualityQ2
dc.identifier.startpage607
dc.identifier.urihttps://hdl.handle.net/11129/9674
dc.identifier.volume10
dc.identifier.wosWOS:000248397000013
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElement
dc.relation.ispartofMathematical Inequalities & Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectnonlinear neutral differential equations
dc.subjectsecond order
dc.subjectasymptotic behavior
dc.subjectnonoscillatory solutions
dc.subjectindefinite continuation
dc.subjectBihari inequality
dc.titleAsymptotic behavior of nonoscillatory solutions of second order nonlinear neutral differential equations
dc.typeArticle

Files