Classification of Load Balancing Optimization Algorithms in Cloud Computing: A Survey Based on Methodology

dc.contributor.authorMoharamkhani, Elaheh
dc.contributor.authorGarmaroodi, Reyhaneh Babaei
dc.contributor.authorDarbandi, Mehdi
dc.contributor.authorSelyari, Arezu
dc.contributor.authorEI Khediri, Salim
dc.contributor.authorShokouhifar, Mohammad
dc.date.accessioned2026-02-06T18:35:23Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, a modern classification of load balancing strategies in cloud computing is presented that can help researchers and practitioners to better understand and select the most appropriate algorithms for their specific needs. Our classification covers three main types of load balancing algorithms including static heuristics, dynamic heuristics, and metaheuristic algorithms. We thoroughly evaluate each type of techniques and identify their respective benefits and drawbacks. Static heuristics are easy to implement and require minimal computational resources, but may yield suboptimal allocations due to significant workload variations. Dynamic heuristics are more adaptable but may incur higher overhead costs due to frequent updates. Metaheuristic algorithms offer highly optimized solutions but may be computationally expensive and not always guarantee optimal results. In addition to offering a framework for understanding various load balancing algorithms, our classification can help researchers and practitioners select the most suitable algorithm for their specific needs and constraints. By taking into account factors such as workload variability, resource availability, and computational limitations, users can choose an algorithm that optimally addresses their requirements, while simultaneously minimizing overhead costs and enhancing efficiency.
dc.identifier.doi10.1007/s11277-024-11311-z
dc.identifier.endpage2103
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.issue4
dc.identifier.orcid0000-0003-2945-9387
dc.identifier.orcid0000-0002-9765-1605
dc.identifier.orcid0000-0003-2559-8996
dc.identifier.scopus2-s2.0-85197498965
dc.identifier.scopusqualityQ1
dc.identifier.startpage2069
dc.identifier.urihttps://doi.org/10.1007/s11277-024-11311-z
dc.identifier.urihttps://hdl.handle.net/11129/11908
dc.identifier.volume136
dc.identifier.wosWOS:001263079900010
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofWireless Personal Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectCloud computing
dc.subjectTask scheduling
dc.subjectLoad balancing
dc.subjectStatic methods
dc.subjectDynamic methods
dc.subjectMetaheuristics
dc.titleClassification of Load Balancing Optimization Algorithms in Cloud Computing: A Survey Based on Methodology
dc.typeReview Article

Files