The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control

dc.contributor.authorGuo, Baozhu
dc.contributor.authorYu, Runyi
dc.date.accessioned2026-02-06T17:54:25Z
dc.date.issued2001
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we give an abstract condition of Riesz basis generation for discrete operators in Hilbert spaces, from which we show that the generalized eigenfunctions of a Euler-Bernoulli beam equation with boundary linear feedback control form a Riesz basis for the state Hilbert space. As an consequence, the asymptotic expression of eigenvalues together with exponential stability are readily presented.
dc.description.sponsorshipNational Natural Science Foundation of China, NSFC
dc.identifier.doi10.1093/imamci/18.2.241
dc.identifier.endpage251
dc.identifier.issn0265-0754
dc.identifier.issue2
dc.identifier.scopus2-s2.0-0035363753
dc.identifier.scopusqualityQ2
dc.identifier.startpage241
dc.identifier.urihttps://doi.org/10.1093/imamci/18.2.241
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7397
dc.identifier.volume18
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofIMA Journal of Mathematical Control and Information
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectDiscrete operator
dc.subjectRiesz basis
dc.subjectSpectrum-determined growth condition
dc.titleThe Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control
dc.typeArticle

Files