A high accurate composite grid method for solving Laplace's boundary value problems with singularities

dc.contributor.authorVolkov, E. A.
dc.contributor.authorDosiyev, A. A.
dc.date.accessioned2026-02-06T18:26:29Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractA sixth-order accurate composite grid method for solving a mixed boundary value problem for Laplace's equation on staircase polygons (the polygons may have polygonal cuts and be multiply connected) is constructed and justified. The O(h(6)) order of accuracy for the number of nodes O(h(-2)lnh(-1)) is obtained by using 9-point scheme on exponentially compressed polar and square grids, as well as constructing the sixth-order matching operator connecting the subsystems. This estimate is obtained for requirements on the functions specifying the boundary conditions which cannot be essentially lowered in C-k,(L). Finally, we illustrate the high accuracy of the method in solving the well known Motz problem which has singularity due to abrupt changes in the type of boundary conditions.
dc.identifier.doi10.1515/rnam.2007.22.3.291
dc.identifier.endpage307
dc.identifier.issn0927-6467
dc.identifier.issue3
dc.identifier.orcid0000-0001-9154-8116
dc.identifier.scopus2-s2.0-34547639521
dc.identifier.scopusqualityQ3
dc.identifier.startpage291
dc.identifier.urihttps://doi.org/10.1515/rnam.2007.22.3.291
dc.identifier.urihttps://hdl.handle.net/11129/10504
dc.identifier.volume22
dc.identifier.wosWOS:000248948500004
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWalter De Gruyter & Co
dc.relation.ispartofRussian Journal of Numerical Analysis and Mathematical Modelling
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectElliptic Problems
dc.titleA high accurate composite grid method for solving Laplace's boundary value problems with singularities
dc.typeArticle

Files