Thin discrete triangular meshes

dc.contributor.authorBarneva, RP
dc.contributor.authorBrimkov, VE
dc.contributor.authorNehlig, P
dc.date.accessioned2026-02-06T18:43:18Z
dc.date.issued2000
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper we present an approach to describe polyhedra by meshes of discrete triangles. The study is based on the theory of arithmetic discrete geometry (J.-P. Reveilles, Geometrie discrete, calcul en nombres entiers ct algorithmique, These d'etat, Universite Louis Pasteur, Strasbourg, December 1991). As distinct from the previous investigations on this topic, the triangles we introduce are parts of the thinnest possible discrete 6-tunnel-free planes, i.e., those that are usually used in practice. Given a plane P in the space, we define a 6-tunnel-free discrete plane, called a regular plane, which appears to be the best approximation to P. Given a mesh of triangles, we propose a method to approximate any triangle by a discrete triangular patch - a portion of a regular plane, and we prove that the resulting triangular mesh is 6-tunnel-free. The properties of the approximation obtained make the suggested approach convenient for practical applications. (C) 2000 Elsevier Science B.V. All rights reserved.
dc.identifier.doi10.1016/S0304-3975(98)00346-6
dc.identifier.endpage105
dc.identifier.issn0304-3975
dc.identifier.issn1879-2294
dc.identifier.issue1-2
dc.identifier.scopus2-s2.0-0000091541
dc.identifier.scopusqualityQ3
dc.identifier.startpage73
dc.identifier.urihttps://doi.org/10.1016/S0304-3975(98)00346-6
dc.identifier.urihttps://hdl.handle.net/11129/13554
dc.identifier.volume246
dc.identifier.wosWOS:000089215500003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofTheoretical Computer Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectdiscrete geometry
dc.subjectdiscrete triangle
dc.subjectmesh of triangles
dc.titleThin discrete triangular meshes
dc.typeArticle

Files