A geometrical approach to quantum holonomic computing algorithms

dc.contributor.authorSamoilenko, AM
dc.contributor.authorPrykarpatsky, YA
dc.contributor.authorTaneri, U
dc.contributor.authorPrykarpatsky, AK
dc.contributor.authorBlackmore, DL
dc.date.accessioned2026-02-06T18:40:03Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe article continues a presentation of modern quantum mathematics backgrounds started in [Quantum Mathematics and its Applications. Part 1. Automatyka, vol. 6, AGH Publisher, Krakow, 2002, No. 1, pp. 234-2412; Quantum Mathematics: Holonomic Computing Algorithms and Their Applications. Part 2. Automatyka, vol. 7, No. 1, 2004]. A general approach to quantum holonomic computing based on geometric Lie-algebraic structures on Grassmann manifolds and related with them Lax type flows is proposed. Making use of the differential geometric techniques like momentum mapping reduction, central extension and connection theory on Stiefel bundles it is shown that the associated holonomy groups properly realizing quantum computations can be effectively found concerning, diverse practical problems. Two examples demonstrating two-form curvature calculations important for describing the corresponding holonomy Lie algebra are presented in detail. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.matcom.2004.01.017
dc.identifier.endpage20
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.issue1
dc.identifier.orcid0000-0002-3033-7419
dc.identifier.scopus2-s2.0-2542497040
dc.identifier.scopusqualityQ1
dc.identifier.startpage1
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2004.01.017
dc.identifier.urihttps://hdl.handle.net/11129/13140
dc.identifier.volume66
dc.identifier.wosWOS:000222113100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofMathematics and Computers in Simulation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectquantum computers
dc.subjectquantum algorithms
dc.subjectdynamical systems
dc.subjectGrassmann manifolds
dc.subjectsymplectic structures
dc.subjectconnections
dc.subjectholonomy groups
dc.subjectlax type integrable flows
dc.titleA geometrical approach to quantum holonomic computing algorithms
dc.typeArticle

Files