Hexagonal grid approximation of the solution of the heat equation on special polygons

dc.contributor.authorBuranay, Suzan C.
dc.contributor.authorArshad, Nouman
dc.date.accessioned2026-02-06T18:53:04Z
dc.date.issued2020
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe consider the first type boundary value problem of the heat equation in two space dimensions on special polygons with interior angles alpha(j)pi, j = 1,2, ..., M, where alpha(j) is an element of {1/2, 1/3, 2/3}. To approximate the solution we develop two difference problems on hexagonal grids using two layers with 14 points. It is proved that the given implicit schemes in both difference problems are unconditionally stable. It is also shown that the solutions of the constructed Difference Problem 1 and Difference Problem 2 converge to the exact solution on the grids of order O(h(2) + tau(2)) and O(h(4) + tau) respectively, where h and root 3/2 are the step sizes in space variables x(1) and x(2) respectively and tau is the step size in time. Furthermore, theoretical results are justified by numerical examples on a rectangle, trapezoid and parallelogram.
dc.identifier.doi10.1186/s13662-020-02749-z
dc.identifier.issn1687-1847
dc.identifier.issue1
dc.identifier.orcid0000-0002-3446-1521
dc.identifier.scopus2-s2.0-85086774109
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1186/s13662-020-02749-z
dc.identifier.urihttps://hdl.handle.net/11129/15828
dc.identifier.volume2020
dc.identifier.wosWOS:000545681600001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofAdvances in Difference Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFinite difference method
dc.subjectHexagonal grid
dc.subjectStability analysis
dc.subjectError bounds
dc.subjectTwo dimensional heat equation
dc.titleHexagonal grid approximation of the solution of the heat equation on special polygons
dc.typeArticle

Files