Particle dynamics and thermal properties in Kalb-Ramond ModMax black holes: Theoretical predictions for observational tests of exotic physics

dc.contributor.authorAl-Badawi, Ahmad
dc.contributor.authorAhmed, Faizuddin
dc.contributor.authorSakalli, Izzet
dc.date.accessioned2026-02-06T18:37:44Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe present a comprehensive theoretical study of geodesic motion and thermodynamic behavior in Kalb-Ramond (KR) black hole (BH) spacetimes sourced by ModMax electrodynamics. Both neutral and charged test particle dynamics are investigated, highlighting how the Lorentz symmetry breaking (LSB) parameter l, the ModMax nonlinearity parameter gamma, and the discrete branch parameter zeta significantly modify orbital structures compared to classical Schwarzschild and Reissner-Nordstrom (RN) solutions. Effective potential analysis reveals notable shifts in the innermost stable circular orbit (ISCO): ordinary branches allow stable orbits closer to the horizon, while phantom branches shift them outward by factors of 5-10. For charged particles, the combined influence of modified gravity and nonlinear electromagnetic fields may induce chaotic trajectories in certain regimes. On the thermodynamic side, we derive full expressions for Hawking temperature, entropy, and Helmholtz free energy. Ordinary branches exhibit divergent specific heat indicating second-order phase transitions, whereas phantom branches yield consistently negative specific heat, implying thermal instability. Phantom BHs are found to possess higher Hawking temperatures and show distinct thermodynamic phase structures, including Hawking-Page-type transitions. Observational features such as BH shadows and gravitational lensing are explored, revealing parameter-dependent changes in photon sphere radii and deflection angles. Notably, the deflection angle analysis via the Gauss-Bonnet theorem method (GBTm) shows opposite-sign electromagnetic corrections for phantom versus ordinary branches, suggesting potential observational discriminants.
dc.identifier.doi10.1016/j.dark.2025.102076
dc.identifier.issn2212-6864
dc.identifier.orcid0000-0003-2196-9622
dc.identifier.orcid0000-0001-7827-9476
dc.identifier.orcid0000-0002-3127-3453
dc.identifier.scopus2-s2.0-105016579173
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.dark.2025.102076
dc.identifier.urihttps://hdl.handle.net/11129/12602
dc.identifier.volume50
dc.identifier.wosWOS:001577780500001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPhysics of the Dark Universe
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectKalb-Ramond gravity
dc.subjectModMax Electrodynamics
dc.subjectGeodesic structure
dc.subjectThermodynamics
dc.subjectDeflection angle
dc.titleParticle dynamics and thermal properties in Kalb-Ramond ModMax black holes: Theoretical predictions for observational tests of exotic physics
dc.typeArticle

Files