On a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators

dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:24:05Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractSeveral extensions of the classical Mittag-Leffler function, including multi-parameter and multivariate versions, have been used to define fractional integral and derivative operators. In this paper, we consider a function of one variable with five parameters, a special case of the Fox-Wright function. It turns out that the most natural way to define a fractional integral based on this function requires considering it as a function of two variables. This gives rise to a model of bivariate fractional calculus, which is useful in understanding fractional differential equations involving mixed partial derivatives.
dc.identifier.doi10.3390/fractalfract5020045
dc.identifier.issn2504-3110
dc.identifier.issue2
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85107852949
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/fractalfract5020045
dc.identifier.urihttps://hdl.handle.net/11129/10050
dc.identifier.volume5
dc.identifier.wosWOS:000665177000001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofFractal and Fractional
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectMittag-Leffler functions
dc.subjectfractional integrals
dc.subjectfractional derivatives
dc.subjectAbel equations
dc.subjectLaplace transforms
dc.subjectmixed partial derivatives
dc.titleOn a Five-Parameter Mittag-Leffler Function and the Corresponding Bivariate Fractional Operators
dc.typeArticle

Files