The impact of corruption on commercial banks' credit risk: Evidence from a panel quantile regression

dc.contributor.authorJenkins, Hatice
dc.contributor.authorAlshareef, Ezuldeen
dc.contributor.authorMohamad, Amer
dc.date.accessioned2026-02-06T18:33:36Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis study explores the impact of countrywide corruption on the credit risk of commercial banks with different levels of credit risk. It applies the quantile regression (QR) estimation method for a panel data of 191 commercial banks, from 18 MENAP countries, between the years 2011-2018. The research finding indicates that corruption significantly exacerbates the problem of bad loans of banks. Furthermore, the QR results reveal that corruption does not affect all banks at the same level. Banks in higher quantiles (i.e., higher credit risk banks) appear to be affected more than the ones in lower quantiles (i.e., lower credit risk banks).Banks with high credit risk appear to be more vulnerable to corruption than banks with low credit risk.
dc.identifier.doi10.1002/ijfe.2481
dc.identifier.endpage1375
dc.identifier.issn1076-9307
dc.identifier.issn1099-1158
dc.identifier.issue2
dc.identifier.orcid0000-0002-1617-7500
dc.identifier.scopus2-s2.0-85100150247
dc.identifier.scopusqualityQ1
dc.identifier.startpage1364
dc.identifier.urihttps://doi.org/10.1002/ijfe.2481
dc.identifier.urihttps://hdl.handle.net/11129/11390
dc.identifier.volume28
dc.identifier.wosWOS:000613944000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofInternational Journal of Finance & Economics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcommercial banks
dc.subjectcorruption
dc.subjectcredit risk
dc.subjectMENAP countries
dc.subjectquantile regression
dc.titleThe impact of corruption on commercial banks' credit risk: Evidence from a panel quantile regression
dc.typeArticle

Files