Sparse l2-norm Regularized Regression for Face Recognition

dc.contributor.authorQudaimat, Ahmad J.
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:28:34Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description8th International Conference on Pattern Recognition Applications and Methods (ICPRAM) -- FEB 19-21, 2019 -- Prague, CZECH REPUBLIC
dc.description.abstractIn this paper, a new l(2)-norm regularized regression based face recognition method is proposed, with l(0)-norm constraint to ensure sparse projection. The proposed method aims to create a transformation matrix that transform the images to sparse vectors with positions of nonzero coefficients depending on the image class. The classification of a new image is a simple process that only depends on calculating the norm of vectors to decide the class of the image. The experimental results on benchmark face databases show that the new method is comparable and sometimes superior to alternative projection based methods published in the field of face recognition.
dc.identifier.doi10.5220/0007355104530458
dc.identifier.endpage458
dc.identifier.isbn978-989-758-351-3
dc.identifier.scopus2-s2.0-85174837207
dc.identifier.scopusqualityN/A
dc.identifier.startpage453
dc.identifier.urihttps://doi.org/10.5220/0007355104530458
dc.identifier.urihttps://hdl.handle.net/11129/10982
dc.identifier.wosWOS:000659174900049
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherScitepress
dc.relation.ispartofIcpram: Proceedings of the 8Th International Conference on Pattern Recognition Applications and Methods
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectSparsifying Transform
dc.subjectFace Recognition
dc.subjectDictionary Learning
dc.subjectTransform Learning
dc.titleSparse l2-norm Regularized Regression for Face Recognition
dc.typeConference Object

Files