Fractionalisation of complex d-bar derivatives

dc.contributor.authorFernandez, Arran
dc.contributor.authorBouzouina, Chaima
dc.date.accessioned2026-02-06T18:47:37Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe usual definitions of fractional derivatives and integrals are very well-suited for a fractional generalisation of real analysis. But the basic building blocks of complex analysis are different: although fractional derivatives of complex-valued functions and to complex orders are well known, concepts such as the Cauchy-Riemann equations and d-bar derivatives have no analogues in the standard fractional calculus. In the current work, we propose a formulation of fractional calculus which is better suited to complex analysis and to all the tools and methods associated with this field. We consider some concrete examples and various fundamental properties of this fractional version of complex analysis.
dc.identifier.doi10.1080/17476933.2020.1722114
dc.identifier.endpage475
dc.identifier.issn1747-6933
dc.identifier.issn1747-6941
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85079213831
dc.identifier.scopusqualityQ2
dc.identifier.startpage437
dc.identifier.urihttps://doi.org/10.1080/17476933.2020.1722114
dc.identifier.urihttps://hdl.handle.net/11129/14447
dc.identifier.volume66
dc.identifier.wosWOS:000513125400001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofComplex Variables and Elliptic Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectO
dc.subjectCelebi
dc.subjectFractional derivatives
dc.subjectcomplex analysis
dc.subjectd-bar derivatives
dc.subjectLeibniz rule
dc.titleFractionalisation of complex d-bar derivatives
dc.typeArticle

Files