Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle

dc.contributor.authorYeganli, F.
dc.contributor.authorNazzal, M.
dc.contributor.authorOzkaramanli, H.
dc.date.accessioned2026-02-06T18:35:40Z
dc.date.issued2015
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper introduces an algorithm for single-image super-resolution based on selective sparse representation over a set of low- and high-resolution cluster dictionary pairs. Patch clustering in the dictionary training stage and model selection in the reconstruction stage are based on patch sharpness and orientation defined via the magnitude and phase of the gradient operator. For each cluster, a pair of coupled low- and high- resolution dictionaries is learned. In the reconstruction stage, the most appropriate dictionary pair is selected for the low- resolution patch and the sparse coding coefficients with respect to the low- resolution dictionary are calculated. A high-resolution patch estimate is obtained by multiplying the sparse coding coefficients with the corresponding high-resolution dictionary. The performance of the proposed algorithm is tested over a set of natural images. Results validated in terms of PSNR, SSIM and visual comparison indicate that the proposed algorithm is competitive with the state-of-the-art super-resolution algorithms.
dc.identifier.doi10.1007/s11760-015-0816-y
dc.identifier.endpage293
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.orcid0000-0003-3375-0310
dc.identifier.scopus2-s2.0-84947494339
dc.identifier.scopusqualityQ2
dc.identifier.startpage285
dc.identifier.urihttps://doi.org/10.1007/s11760-015-0816-y
dc.identifier.urihttps://hdl.handle.net/11129/12025
dc.identifier.volume9
dc.identifier.wosWOS:000365172400028
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofSignal Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectSingle-image super-resolution
dc.subjectSparse representation
dc.subjectDictionary learning
dc.subjectSharpness measure
dc.subjectCoupled dictionaries
dc.subjectGradient phase angle
dc.titleImage super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness and gradient phase angle
dc.typeArticle

Files