A complex analysis approach to Atangana-Baleanu fractional calculus

dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:33:40Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe standard definition for the Atangana-Baleanu fractional derivative involves an integral transform with a Mittag-Leffler function in the kernel. We show that this integral can be rewritten as a complex contour integral which can be used to provide an analytic continuation of the definition to complex orders of differentiation. We discuss the implications and consequences of this extension, including a more natural formula for the Atangana-Baleanu fractional integral and for iterated Atangana-Baleanu fractional differintegrals.
dc.identifier.doi10.1002/mma.5754
dc.identifier.endpage8087
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue10
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85066844618
dc.identifier.scopusqualityQ1
dc.identifier.startpage8070
dc.identifier.urihttps://doi.org/10.1002/mma.5754
dc.identifier.urihttps://hdl.handle.net/11129/11438
dc.identifier.volume44
dc.identifier.wosWOS:000478831100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofMathematical Methods in the Applied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectanalytic continuation
dc.subjectcomplex analysis
dc.subjectfractional calculus
dc.subjectMittag-Leffler functions
dc.titleA complex analysis approach to Atangana-Baleanu fractional calculus
dc.typeArticle

Files