Random Forest Feature Selection for SAR-ATR

dc.contributor.authorBolourchi, Pouya
dc.contributor.authorMoradi, Masoud
dc.contributor.authorDemirel, Hasan
dc.contributor.authorUysal, Sener
dc.date.accessioned2026-02-06T18:16:55Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description20th UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim) -- MAR 27-29, 2018 -- Emmanuel Coll, Cambridge, ENGLAND
dc.description.abstractIn this paper, a novel approach for selection of relevant features in SAR-ATR is proposed. The main concern of all studies in this filed is the accuracy. For this reason, many researchers have worked on feature extraction phase. Just a few studies focus on feature selection stage. The goal of working on feature selection is twofold. Firstly, the dimensionality of feature space can be reduced and secondary the accuracy can be further improved by eliminating the redundant features. Random Forest is the technique that can be easily implemented over the alternative algorithms such as Genetic Algorithms to SAR-ATR. The easy and fast implementation are the main advantages over the alternative methods. The experimental results show that by selecting just a few features, the accuracy is reaches to saturation.
dc.description.sponsorshipIEEE Comp Soc UK & RI,UK Simulat Soc,European Federat Simulat Soc,European Council Modelling & Simulat,Asia Modelling & Simulat Sec,Kingston Univ,Imperial Coll,Machine Intelligence Res Labs,Norwegian Univ Sci & Technol,Nottingham Trent Univ,Univ Technol Malaysia,Univ Sci Malaysia,Univ Malaysia Sabah,Univ Technol Mara,Univ Malaysia Perlis,Univ Malaysia Pahang,IEEE UK & RI,W Chester Univ Pennsylvania,Univ Tikrit,Univ Zilina,Fort Hays State Univ,Iran Telecom Res Ctr,Univ Teknikal Malaysia Melaka,Cardiff Metropolitan Univ,Hanbat Natl Univ,Tech Univ Appl Sci Wildau,Ken Saro Wiwa Polytechn,Rajasthan Tech Univ,NE Univ
dc.identifier.doi10.1109/UKSim.2018.00028
dc.identifier.endpage95
dc.identifier.isbn978-1-5386-5878-9
dc.identifier.issn2381-4772
dc.identifier.orcid0000-0003-3492-0617
dc.identifier.orcid0000-0002-5657-0833
dc.identifier.scopus2-s2.0-85061066271
dc.identifier.scopusqualityN/A
dc.identifier.startpage90
dc.identifier.urihttps://doi.org/10.1109/UKSim.2018.00028
dc.identifier.urihttps://hdl.handle.net/11129/8719
dc.identifier.wosWOS:000468444200017
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2018 Uksim-Amss 20Th International Conference on Computer Modelling and Simulation (Uksim)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcomponent
dc.subjectSyentetic Aperture radar
dc.subjectrandom forest
dc.subjectmoment methods
dc.titleRandom Forest Feature Selection for SAR-ATR
dc.typeConference Object

Files