Random Forest Feature Selection for SAR-ATR
| dc.contributor.author | Bolourchi, Pouya | |
| dc.contributor.author | Moradi, Masoud | |
| dc.contributor.author | Demirel, Hasan | |
| dc.contributor.author | Uysal, Sener | |
| dc.date.accessioned | 2026-02-06T18:16:55Z | |
| dc.date.issued | 2018 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description | 20th UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim) -- MAR 27-29, 2018 -- Emmanuel Coll, Cambridge, ENGLAND | |
| dc.description.abstract | In this paper, a novel approach for selection of relevant features in SAR-ATR is proposed. The main concern of all studies in this filed is the accuracy. For this reason, many researchers have worked on feature extraction phase. Just a few studies focus on feature selection stage. The goal of working on feature selection is twofold. Firstly, the dimensionality of feature space can be reduced and secondary the accuracy can be further improved by eliminating the redundant features. Random Forest is the technique that can be easily implemented over the alternative algorithms such as Genetic Algorithms to SAR-ATR. The easy and fast implementation are the main advantages over the alternative methods. The experimental results show that by selecting just a few features, the accuracy is reaches to saturation. | |
| dc.description.sponsorship | IEEE Comp Soc UK & RI,UK Simulat Soc,European Federat Simulat Soc,European Council Modelling & Simulat,Asia Modelling & Simulat Sec,Kingston Univ,Imperial Coll,Machine Intelligence Res Labs,Norwegian Univ Sci & Technol,Nottingham Trent Univ,Univ Technol Malaysia,Univ Sci Malaysia,Univ Malaysia Sabah,Univ Technol Mara,Univ Malaysia Perlis,Univ Malaysia Pahang,IEEE UK & RI,W Chester Univ Pennsylvania,Univ Tikrit,Univ Zilina,Fort Hays State Univ,Iran Telecom Res Ctr,Univ Teknikal Malaysia Melaka,Cardiff Metropolitan Univ,Hanbat Natl Univ,Tech Univ Appl Sci Wildau,Ken Saro Wiwa Polytechn,Rajasthan Tech Univ,NE Univ | |
| dc.identifier.doi | 10.1109/UKSim.2018.00028 | |
| dc.identifier.endpage | 95 | |
| dc.identifier.isbn | 978-1-5386-5878-9 | |
| dc.identifier.issn | 2381-4772 | |
| dc.identifier.orcid | 0000-0003-3492-0617 | |
| dc.identifier.orcid | 0000-0002-5657-0833 | |
| dc.identifier.scopus | 2-s2.0-85061066271 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 90 | |
| dc.identifier.uri | https://doi.org/10.1109/UKSim.2018.00028 | |
| dc.identifier.uri | https://hdl.handle.net/11129/8719 | |
| dc.identifier.wos | WOS:000468444200017 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2018 Uksim-Amss 20Th International Conference on Computer Modelling and Simulation (Uksim) | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | component | |
| dc.subject | Syentetic Aperture radar | |
| dc.subject | random forest | |
| dc.subject | moment methods | |
| dc.title | Random Forest Feature Selection for SAR-ATR | |
| dc.type | Conference Object |










